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Abstract

In this thesis, attempts have been made to explore the interplay between dynamics and struc-

tural changes in a simple system of a binary mixture of oppositely charged colloidal particles

driven by a constant electric field using Brownian Dynamics Simulations. This is widely re-

garded as a generic model of pattern forming non-equilibrium systems. The system is known

to form microscopic lanes of like charges along the field. The scenario resembles laning in a

host of systems found in nature. We observe crossover in dynamics: from an initial fast relax-

ation in the homogeneous state to a slowed-down lane state. There is an intermediate pre-lane

state with anomalous dynamical responses, namely, a non-Fickian exponential tail in self-van

Hove functions and a stretched exponential relaxation in both self-overlap functions and dis-

tinct van Hove functions. The probability distribution of particle diffusion broadens due to the

coexistence of competing timescales of relaxation in the pre-lane state.

Furthermore, we investigate the growth in structural heterogeneity as electric field is turned

on equilibrium system in transient condition. The aging persists till the system reaches steady

states. We show that the lifetime of anomaly in dynamical responses depends upon the time

of observations after the field is turned on. The formation of heterogeneous structures shows

signature of aging. The aging is not present when the steady states relax back to equilibrium

in absence of the field. There are two structural length-scales in the system characterizing

correlation in a given species and that between cross-species, grows at distinct rates, though

both follow algebraic growth. The spatial length-scale of dynamic heterogeneity is identified

in terms of length-scale of structural correlation between the particles of different mobilities.

These length-scales are correlated in transient conditions and become independent in steady

states. The thesis also discusses the possible implications of our research.
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Chapter 1

Introduction

Soft Materials are complex systems that are susceptible to external perturbations [1]. The size

of the particles in these systems falls between the microscopic and the macroscopic regimes [2]:

They are big enough to behave like classical particles but small enough for thermal motion

[3,4]. These materials show fascinating phenomena, ranging from emergence of patterns to self-

assembly, relevant in different areas of interdisciplinary sciences bridging physics, chemistry,

biology and engineering [1–7]. These phenomena are often described in terms of continuum

phenomenological models [8,9] where microscopic description on particle scales is largely lacking

[7]. The microscopic description of these phenomena are not only pedagogically challenging but

also would be immensely important in technological applications [10].

Colloids are ideal model system for understanding equilibrium and non-equilibrium phenom-

ena found in soft matter systems [5–7]. Due to their large size, their motion is slow that can be

tracked in experiments [2–7]. Laning is a typical example of pattern formation in systems real-

ized in a host of systems, like army ants [29], pedestrian movements [30], granular media [31],

dusty plasma [32], dipolar microswimmers [33] out of equilibrium conditions [4–6,11–33]. Col-

loids also show laning: Applying a constant electric field on a system of binary charged colloids,

the system crosses over from a homogeneous mixture to a state with lanes of likely charged

particles elongated parallel to the field [5, 6, 11–28]. The lane formation has been affirmed

in experiments [16, 20] where binary mixture of charged colloidal particles in a capillary are

subject to electric field. The oppositely charges are fluorescently labelled with die in order to

tag the color-coded particles. The Debye-Hückel screening length [34] of the particles can be

manipulated in these experiments [5–7]. The particles are tracked in real time in real space

using confocal microscopy [16, 20]. The confocal images are analyzed to track the particle tra-

jectories. From the initial mixed state, particles form lanes along the field within a very short

1
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time [20]. The projection of the lanes in the transverse plane show domains of like charges.

These domains proliferate along the direction of the field. The formation of the lanes are ac-

companied by enhanced diffusion. The diffusion decreases significantly for high field indicating

slowing down [20]. These experiments also affirm the presence of slow and fast particles in the

system, suggesting dynamic heterogeneity in steady states [20]. The particles in the lanes are

different from the particles not in the lanes. On withdrawal of the field, the system relaxes

back to the initial state again, suggesting an absence of hysteresis [20].

There are theoretical studies, including computer simulations on lane formation [11–15,

17, 21–28], in both two [11–15, 21, 22, 24, 25]and three dimensions [17, 23, 26–28]. There is a

prediction of dynamic instability of the homogeneous state in the form of a re-entrant effect

in lane formation: Lane formation occurs only within a finite density window for a particular

field strength. The critical field strength for lane formation also depend upon the density of

particles. This has been supported by analytical results using the phenomenological Dynamical

Density Functional Theory (DDFT) [12, 13]. The phase diagram of the laning transition has

been obtained for the model with and without hydrodynamic interactions(HI) [7, 17]. The

experiments are in good agreement with the results obtained previously in different studies

without HI, suggesting that HI does not contribute much to explain lane formation in driven

colloids [20]. The particle correlations grow algebraically with field strength in two dimensions

[22,25]. The growth in particle correlation has been observed in both theoretical and analytical

results. The correlation decays exponentially in the transverse plane and algebraically along

the field [25].

In this thesis, we project lane forming system as a model system of pattern forming non-

equilibrium systems. Our objectives are as follows:

• Microscopic structures on particle scale in steady states away from equilibrium.

• Dynamic response in non-equilibrium steady states.

• Structural relaxation in steady states.

• Transient responses when a structurally homogeneous equilibrium state approaches non-

equilibrium steady states with structural heterogeneity.

• Growth of correlations during formation of heterogeneous structures.
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We simulate a three-dimensional system of colloidal particles of same size and opposite

charges with equal proportion in a highly viscous solvent media. The particles interact pair-

wise: The opposite charges attract, while the like charges repel each other via the Derjaguin-

Landau-Verwey-Overbeek (DLVO) [35, 36] potential. The thermal bath is kept at a constant

temperature which is the source of fluctuation in the system. Due to the high viscosity of the

medium, the motion of the particles is over-damped. We integrate the equation of motion of

individual particles to generate the particle trajectories following Ref. [37]. We initialize the

system with random configurations. We let this system to equilibrate without the external

electric field. Then a constant unidirectional electric field is turned on to drive the system

away from its equilibrium to reach non-equilibrium steady states with patterns of like charges

parallel to the field as lanes. We also study the cases where these steady state patterns are

relaxed on withdrawal of the field so that the system reaches the equilibrium state again.

We analyze structures and dynamics in the steady states and in transient conditions. The

microscopic structures have been monitored via the lane order parameter [17]. These struc-

tures are realized via density profiles [38]. The ordering in the structures are captured by the

pair correlation functions (PCF) [38] which is the probability of separation between a pair of

particles. We study dynamics using the van Hove functions (vHf) [39]. The vHf consists of two

parts: self and distinct [38,39]. Self-van Hove functions (self-vHf) is the probability of particle

displacement in a given time interval [38, 39]. The relaxation of the structures is monitored

via the distinct van-Hove function (distinct-vHf) which is the probability of pair separation

in a given time interval, captures the relaxation of structures due to diffusion [38, 39]. Self-

Overlap function provides the fraction of particles having displacement within a critical limit

in a given time interval [40,41]. Dynamic susceptibility captures the dynamic fluctuation in the

self-Overlaps show the structural response [40, 41]. In all the cases, we average the dynamical

and structural quantities over the Brownian trajectories generated with different initial config-

urations. This is to ensure that the particles explore the full phase space and averaged over

noise [42, 43].

Microscopic Structures: The density profiles show changes in structures in the plane trans-

verse to the field. For sufficiently high value of the field, in the transverse plane shows small

domains of like charges. Along the field, these domains are elongated. They proliferate as lanes

for the very high field while the patterns in the transverse plane are similar to network like

structures. The PCFs capture the order in these structures: A sharp peak at a particle sepa-

ration between the opposite charges in PCFs in the equilibrium suggests that the equilibrium

state is dominated by Coulomb attraction between the opposite pairs. A broad peak is seen
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in PCF between the like charges at more than two particle separation indicates that particle

only sit opposite-pairwise in this state. For finite values of the field, the sharp peak in the PCF

between opposite charges decay and the broad peak in PCF between the like charges increases.

Also, in all these cases, higher coordination shells are seen in PCFs among both the like and

cross charges when the domains of like charges are present. The PCFs also show asymmetry

along the field with algebraic decay opposite to the field direction. The co-operativity of the

like charges in lanes is quantified in terms of clusters of particles with similar charges residing

within a critical distance. In the equilibrium, there are many isolated clusters. In contrast,

in the lane state, there are fewer but bigger clusters as lanes. In the steady state with the

intermediate field, there are many clusters with different sizes which we define as the pre-lane

state. Hence, the spread in the cluster size distribution has a maximum in the pre-lane state.

We study dynamics in these three typical situations.

Dynamic response: In absence of electric field, the self-vHf is a symmetric Gaussian as in

normal liquids. As soon as the field is turned on, the self-VHf along the field is Gaussian

but the peak starts shifting. The drift in the peak position depends on the strength of the

field. The width in the distribution becomes asymmetric with respect to the field. The self-vHf

develops an exponential tail in the pre-lane state and becomes double Gaussian in the lane

state. However, opposite to the field, the self-vHf remains Gaussian. In the transverse plane,

the dynamics is similar to that along the field.

The exponential tail has been described earlier in terms of heterogeneity in dynamics in a

system [44]. The individual particle motion is tracked. The particles are randomly picked from

different structural regions of the system. The probability distribution of particle displacement

shows that particle motion is diffusive. The second moment in the probability distribution

of particle displacement shows different slopes in different time, suggesting heterogeneity in

diffusion. The diffusivities are collated to compute the diffusion spectrum. The diffusion

spectrum has a peaked form in the homogeneous state. This broadens in the pre-lane state. In

the lane state, there is a re-entry of the peaked form of the diffusion spectrum, albeit with a

tail towards higher diffusion. The primary peak in the spectrum shifts to the lower diffusion

values indicate a slowing down in the transverse plane. The heterogeneity in the diffusion is

maximum in the pre-lane state.

The distinct-vHfs equals to the PCFs when the time interval is zero. The distinct-vHfs

between the like charges in the Fourier space has a peak while that between the opposite

charges has a dip. The decay of the peak and the dip with time gives the structural relaxation.

The structural relaxation between the like charges is a direct measure of the relaxation of like



CHAPTER 1. INTRODUCTION 5

charges that mostly resides in the lanes, while that between the opposite charges quantifies the

relaxation of the lane interfaces since the opposite charges comes only in contact at the lane

interfaces. The distinct-vHfs show exponential decay except between the opposite charges in

the pre-lane state. In this case, the relaxation follows slow stretched exponential dependence.

The slow relaxation is phenomenologically interpreted via the Vineyard’s approximation which

connects the particle structure to relaxation due to diffusion. When the change in structure is

within first order in the lane order parameter, the slow relaxation can be accounted for by the

presence of exponential tail.

Structural relaxation: The overlap function has been previously tested with success in glass-

forming liquids in exploring the slowing down [40, 41]. The overlap function captures the

slowing down in the system undergoes crossover. In both the homogeneous and the lane state,

the overlap function shows algebraic decay as in complex liquids [45]. In the pre-lane state,

the overlap function show slow stretched exponential dependence. The dynamic susceptibility

captures the dynamic fluctuation in the overlap function, show heterogeneity in terms of distinct

peaks in the lane state due to distinct response in fast and slow particles. There is simultaneous

presence of slow and fast particle in the system. The slow and fast relaxing particles are

identified from the distribution of particle displacements in a given time window. The partial

distinct-vHfs are constructed between these slow and fast relaxing particles within the particular

time-window. The relaxation of these partial structures follows exponential decay. However,

the decay rates are different. The heterogeneity in relaxation times is maximum in the pre-lane

state.

Transient Response: We, further, study the evolution of the system after application of

electric field onto the system in equilibrium. When a system is disturbed from its equilib-

rium, the physical quantities evolve with time to reach a new state. The new state may be

an equilibrium state or a steady state far from equilibrium [8]. The time dependence of dif-

ferent dynamical quantities during the evolution describes the transient response. Although

near-equilibrium treatments have been applied successfully to understand transition between

equilibrium states [8], microscopic description of transient response while approaching steady

states is still lacking [3,4]. This is relevant in understanding the kinetics of pattern formation [9]

in non-equilibrium steady states observed in a host of systems [2].

On application of the field, the homogeneous equilibrium state starts evolving and reaches

non-equilibrium steady states. The lane order parameter increases with the time of observations

after application of the field. For different values of the field strength, the system reaches steady

states in different times. The self-vHfs are analyzed in transient conditions. For small field,
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in the homogeneous state, the self-vHfs are Gaussian for all times of observations. As the

system is driven to the pre-lane state, the self-vHfs develop the exponential tail much before

the steady state is reached. Similarly, the self-vHf becomes double Gaussian before the laning

is complete for larger field strength. Single particle diffusion coefficient also depend on the

times of observation. The diffusivities decrease as the system ages till the system approaches

the steady states. The aging is absent when the steady states approach the equilibrium states

on withdrawal of the field, suggesting the dynamical routes of growth and relaxation of the

heterogeneous structures are different.

Growth of Correlation: The development in structural correlation has been probed via

the time-dependent PCFs. The development in structural correlation length follows algebraic

dependence on the age of the system. This growth takes place till the system reaches the steady

states. Once it reaches the steady states, the correlation between opposite charges decays slowly

suggesting coarsening of the lanes. The dynamic heterogeneity suggested by the distribution

of diffusion coefficients indicates the presence of slow and fast particles simultaneously in the

system. The length-scales between slow particles in both the species, show similar behavior.

These length scales are correlated during the transient conditions, but they become independent

in steady states.

In brief, we observe in-homogeneous structures in a binary mixture of oppositely charged

colloid due to competing interaction which could be tuned by the applied field. We identify

field driven dynamical state having anomalous dynamical responses with exponential tail in

self-vHf and stretched exponential relaxation in distinct-vHf. The particle diffusion here is

having a distribution, instead of a single diffusion coefficient. In transient conditions, the

anomaly in dynamical response depends on the age of the system once field is switched on.

The aging persists till the steady states are reached. Our results show the existence of multiple

growing length-scales in the system. We show that these length-scales are correlated during

the formation of the structures and are independent in steady states.

These results are not only relevant in the context of lane formation but also would be

pertinent in a host of soft matter systems that show the emergence of structure due to competing

interaction under drive. This situation is often encountered in areas of rheology, micro-fluidics

and bio-molecular systems [10]. Also, it would be interesting to check whether the dynamical

response affect the visco-elastic and dielectric response of the system, not only in the present

scenario but also in cases where similar charged or magnetic dipolar colloids are subject to

oscillatory field, or confinement or both [63,64], in steady states, even in transient conditions.

The organization of the rest of this thesis is as follows: We first introduce the model and a
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brief of methods in the following Chapter 2. Then we discuss our results of structural quantities

in the steady states in Chapter 3. This is followed by our analysis of dynamical response

in steady states in Chapter 4. In Chapter 5, the heterogeneity in steady state structural

response has been discussed. Chapter 6 contains transient response where we discuss both,

growth of heterogeneous structure and relaxation from heterogeneous structures. Chapter 7

lists heterogeneous correlation between dynamic length-scales in transient conditions.



Chapter 2

Methods

In this chapter, we briefly describe the model system(Sec. 2.1). This is followed by algorithm

we use in the simulations (Sec. 2.2). The final part (Sec. 2.3) consists of a discussions on the

dynamical and structural quantities we compute in different conditions.

2.1 Model

Our simulated system consists of a binary mixture of equal number of positively (N+) and

negatively (N−) charged colloidal particles of diameter σ with (N+=N−) in a solvent of viscosity

η in a cubic box of length L at temperature T with the periodic boundary conditions. The

hydrodynamic interaction has not been considered here.

The pair interaction between particles at positions
→
Ri and

→
Rj and separation rij = |

→
Ri−

→
Rj |

is given by [17]

V (rij) = VSC(rij) + VRepulsion(rij). (2.1)

Here, VSC(rij) has DLVO form [35,36]:

VSC(rij) = V0[qiqj/(1 + κσ

2 )2][exp(−κσ((rij/σ)− 1))/(rij/σ)]. (2.2)

VRepulsion(rij) has Weeks-Chandler-Anderson(WCA) form [46]:

VRepulsion(rij) =


ε[(σ/rij)12 − (σ/rij)6] + 1

4 , if rij < 21/6σ.

0, otherwise
(2.3)

Here qi(=q for all i) is the charge of the ith particle, κ the inverse screening length, V0 the

interaction strength parameter and ε = 4 |q|2 V0(1 + κσ/2)2 [17].

8
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We choose the parameters used in Ref. [17]. We take equi-molar binary mixture of particles

with diameter σ(= 1µm) and charge ±q in a viscous medium with viscosity η(= 1cP ) in a cubic

box of length L at temperature T (= 298K). The screening length of the particle interaction

has been fixed at κσ = 5.0 and V ∗0 = |q|2 V0/kBT = 50.0. We take τβ(= σ2/D0 ) as time unit, σ

the length unit and kBT the energy unit. Here, D0(= kBT/3πησ, kB the Boltzmann constant)

the Einstein-Stokes Diffusion coefficient.

The steady state data analysis is based on a system with N = 2000 in a cubic box of length

L = 21.599σ. Since averaging in transient conditions can be done only over trajectories, a bigger

system is required for better statistics. In the transient condition, we consider a bigger system

with N = 10000 in a box with L = 36.827 with same volume fraction and other parameters

remain same.

2.2 Algorithm

The BD simulations [18] are carried out using the Langevin’s equation in over-damped limit [37]:

Γ d

dt
~Ri = qf0 Ẑi + ~∇i

N∑
j=1

V (rij) + ~Fi(t) (2.4)

Eqn. (2.4) could be discretized as [17,37]-

~Ri(t+ ∆t) = ~Ri(t) + ~Fi(∆t) + ~∇i

N∑
j=1

V (rij)∆t+ qf0 Ẑi∆t (2.5)

Here, Γ(= 3πση) is the viscous damping and
→
Fi(t) the fluctuating force with variance

< Fα
i (t)F β

j (t′) >= 2D0δαβδijδ(t − t′) where α,β denote the cartesian components and D0 the

Einstein-Stokes Diffusion coefficient with ΓD0 = kBT ,kB the Boltzmann constant. We take

τβ = (σ2/D0 ) as unit time, d the length unit and kBT the energy unit. The integration time

step for Eq.(2.4) ∆t = 0.00005.

2.3 Data Analysis

The data analysis has been performed for the structural and dynamic quantities in both steady

states and transient conditions. The system is first initialized with random configurations and

equilibrated with f = 0. We wait for 100τβ and then, the field is turned on with non-zero

f(= |q| f0σ/kBT ) so that the system reaches a steady state. The steady state statistics are

gathered for 50τβ. Finally the steady states are relaxed on withdrawal of the field (f = 0) to
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reach the equilibrium. Different such cases are studied for different values of f . The steady state

statistics are averaged over configurations and NT (= 20)Brownian trajectories. In transient

conditions, we only average over the BD trajectories. The dynamical and structural quantities

we compute are as follows:

2.3.1 Structural Quantities

(a) Lane Order Parameter

The tendency in laning is captured via the lane order parameter defined in [17],

Φ =< 1
N

N∑
i=1

φi > (2.6)

is assigned to every particle with φi = [nl−no]2
[nl+no]2

. Here, nl and no are the numbers of like-charged

particles and oppositely charged particles, respectively, whose projections of distance onto the

plane perpendicular to the field are smaller than a cutoff length scale zc(= 0.75σ) and ‘<>’

signifies averages over both the initial conditions and Brownian trajectories.

(b) Single particle density: Structural patterns are visualized via the single particle den-

sity [38,42]. This is defined as the probability of finding a particle at ~r given by [38]

ρ(~r) = (1/N) <
N∑
i=1

δ(~r − ~Ri) > (2.7)

Here ~Ri is the position vector of ith particle.

(c) Pair Correlation Functions (PCF):The steady state structural correlations are given by

pair correlation functions(PCF) [38,42] which are probability distributions of particle separation

at ~r at a given time. This is given by-

g(~r) = (1/N2) <
N∑
i=1

∑
j 6=i

δ(~r + ( ~Rj − ~Ri)) > (2.8)

(d) Cluster-size Distribution: Identification of clusters use of a clustering algorithm in Ref.

[42]. This is based on nearest-neighbor distance criterion in Ref. [47]. First a random particle

i is picked. All other particles j that satisfy

rij < rcl (2.9)

where rcl is a critical separation between two such particles, are defined to be in the same

cluster as i. Each such particle j is added to the cluster, and is subsequently used in the same
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way as i, to identify further members. The process goes till it finds no particles within rcl for

each of the particles contained in the cluster. Probability of having a cluster with size s in a

system is given by Pcluster(s). We use rcl = 1.4σ for our calculation as suggested by Ref. [48]

2.3.2 Dynamical Quantities

(a) van-Hove Function(vHf): This is defined as the probability of finding a particle at position

r at time t, given that there was a particle at the origin at time t = 0, given by [38,39] -

G(~r, t)(= (1/N) <
N∑
i=1

N∑
j=1

(δ(~r + ~Rj(0)− ~Ri(t)) > (2.10)

It consists of two parts [38]:

(1) The self-vHfs: The probability distribution of displacements(~r) of individual particles

in a given time interval t is given by [38,39]

GS(~r, t)(= (1/N) <
N∑
i=1

δ(→r +
→
Ri(0)−

→
Ri(t) > (2.11)

(2) The distinct-vHfs: Probability distribution of particle separations (~r) between a pair of

particles over a time interval, t is given by [38,39]

GD(~r, t)(= (1/N2) <
N∑
i=1

∑
j 6=i

(δ(~r + ~Rj(0)− ~Ri(t)) > (2.12)

(b) Overlap Function: Structural relaxation is generally interpreted via the evolution of self

Overlaps [40,41], given by given by

Q(t) ∼ 1
N

N∑
i=1

ψ(| ~Ri(0)− ~Ri(t)|) (2.13)

Here,

ψ(r) =


1, if r ≤ 0.3σ

0, elsewhere
(2.14)

(c)Dynamical Susceptibility:

The dynamical susceptibility is given in terms of the dynamic fluctuations in Q(t) [40, 41],

χ4(t) =< Q2(t) > − < Q(t) >2 . (2.15)



Chapter 3

Steady State Structures

Here we report the structural features in steady states [23] The details of the model system has

been discussed in Sec. 2.1. We start with the equilibrium state and apply electric field along z

direction. We describe structural features in the steady states in terms of lane order parameter

(Sec 3.1), density profiles (Sec 3.2), PCF (Sec 3.3)and cluster size distribution(Sec 3.4). We

discuss our results in Sec. 3.5 and we conclude in Sec. 3.6. The details of the calculations have

been described in Chapter 2.

3.1 Lane order parameter

On application of the applied field with strength f , system reaches steady states. Fig. 3.1 (a-c)

show transverse plane snapshots for field strength f = 50, f = 150 and f = 300 respectively.

Typical particle configurations in a typical strip in XZ plane in Fig. 3.1 (d-f) for the three

values of f . Snapshots [Figs. 3.1(a,d)] show homogeneously mixed opposite-charges dispersed

in the system for f = 50. With increasing f , the pairs takes the form of tiny domains of likely

charges with short-ranged structural order[Figs. 3.1(b)]. These domains tend to align along

f in [Fig. 3.1(e)]. Increasing f further, the domains coarsen to network-like structure in XY

plane with long-range correlation [Fig. 3.1(c)]. The structures proliferate in the direction of

the f as lanes for f = 300 [Fig. 3.1(f)].

In the equilibrium states, the lane order parameter (Sec. 2.3.1) Φ = ΦEq ≈ 0.56. As soon

as the field is turned on, Φ monotonically increase and reaches a steady value ΦS. In steady

states, Φ fluctuates around ΦS. ΦS though depends upon the f . ∆Φ = Φ(f) − ΦEq is the

tendency of laning in the system for a particular value of f . Here, ∆Φ = 0 for f = 0. ∆Φ ≈ 0

retains upto f = 50. We observe ∆Φ 6= 0 for f ≥ 50. Beyond this ∆Φ monotonically increase

with f [Fig. 3.2].

12
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Figure 3.1: Snapshots of particles ( positively charged colloidal particles, Filled circle and

negatively charged colloidal particles, circle with N+ +N− = N = 2N+ = 2N− = 2000) in XY

plane (a) for f = 50 (b) f = 150 and (c) f = 300. Typical particle configurations in XZ plane

for 9.5 < Y < 10.5 are shown (d) for f = 50 (e) f = 150 and (f) f = 300.

3.2 Density Profiles

We substantiate the particle configurations in Fig. 3.2 through the density plots. Both species

behave similarly, and we focus on the +ve species. ρ(+)(Y, Z), ρ(+)(X,Z) and ρ(+)(X, Y )

represent density profiles of the +ve species in YZ, XZ and XY planes respectively. For f = 0,

the mixture is homogeneous and we observe ρ(+)(X, Y ) ≈ ρ(+)(X,Z) ≈ ρ(+)(Y, Z). We show

ρ(+)(X, Y ) and ρ(+)(X,Z) in Fig.3.3 for different f . For small f(= 50), a nearly homogeneous

mixed phase is obtained, where small domains of like-charged particles aligned parallel to

the field is observed [Figs. 3.3(a) and (b)]. These structures are similar to that for f = 0.

With increase in f , the difference in the structural morphology in XY and XZ becomes more

prominent. Bigger domains are seen in ρ(+)(X, Y ) with increasing f (= 150) [Figs. 3.3(c) and

(d)]. Finally the lane state takes place, as in earlier observations [16, 17], for sufficiently large

f (= 300). Here networks of large domains in XY plane along with vertical lanes in the XZ

plane are seen [Figs. 3.3(e) and (f)]. The structural morphologies in XY plane are very similar

to those in pattern forming liquids [9]. Our primary focus would be on the transverse plane
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Figure 3.2: Dependence of Lane Order parameter ∆Φ =Φ(f) - Φ(0) on f .

where structural changes are significant.

Figure 3.3: Density Plots (a) ρ(+)(X, Y ) and (b) ρ(+)(X,Z)for f =50; (c) ρ(+)(X, Y ) and (d)

ρ(+)(X,Z)for f =150; and (e) ρ(+)(X, Y ) and (f) ρ(+)(X,Z)for f =300. The contour values are

indicated by the shades at the bottom

3.3 Pair Correlation Function

The steady state structures are characterized via the pair correlation functions. The pair

correlation function, between two like charges, g(++)
f (r⊥, z) and that between two opposite

charges, g(+−)
f (r⊥, z) are shown in Fig.3.4 as functions of r⊥ for two representative values of
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z. We observe correlations only upto single particle diameter for f = 50 for both values of z

[Inset, Fig.3.4(a)]. At f = 150 [Main panel, Fig. 3.4(a)], the correlations in g(++)
f (r⊥, z) extend

up to a couple of coordination shells for both z. The strong peak in g
(+−)
f (r⊥, z) for r⊥ ≈ 1

indicates tendency of alignment of positively charged particles in vertical lanes with short

ranged correlations in the transverse plane in the pre-lane state. Fig.3.4(b) shows PCFs for

fully developed lane state with enhanced in-plane correlations extending upto several particle

diameter at higher f (= 300) for both z. Thus length scale of structural correlations increases

with f.

Figure 3.4: Structural Correlations: g(++)
f (r⊥, z) (solid line) and g

(+−)
f (r⊥, z) (dashed line) as

functions of r⊥ for z=0 (lower curves) and z=10.7 (upper curves, with vertical offset 1.0) for

(a) f = 150 and Inset, f = 50 and (b)f = 300 (main panel). Inset, ∆EC+(f) (dashed line)

and ED+(f) (open circles) as functions of f . Dependences of (c) g(+−)
f (r⊥, z) (main panel) and

g
(++)
f (r⊥, z) (Inset) on z at r⊥ ≈ 1 for f = 50 (solid line), f = 150 (dashed line) and f = 300

(dotted line).
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We show g
(+−)
f (r⊥,±z) (Main panel) and g(++)

f (r⊥,±z) (Inset) in Fig. 3.4(c) as functions of

z at r⊥ ≈ 1 for different values of f . For f = 0, g(+±)
f (r⊥, z) ≈ g

(+±)
f (r⊥,−z) (data not shown).

For f 6= 0, the symmetry in g
(+−)
f (r⊥, z) is lost, although g

(++)
f (r⊥, z) remains symmetric. For

f = 50, there are unequal peaks in g
(+−)
f (r⊥, z) at z ≈ ±1. This peak gets broadened at

f = 150. For f = 300, g(+−)
f (r⊥,−z) decays as (−z)−γ with γ ≈ 2.09. This algebraic decay is

consistent to the observations reported for two dimensional systems [22].

The correlation energy [38] EC+(f)( =
∫
V (++)(r) g(++)

f (r⊥, z) d2r⊥dz +
∫
V (+−) (r)g(+−)

f

(r⊥, z)d2r⊥dz) is the cost of energy for replacing a negatively charged particle by a positively

charged particle in a domain of positively charged particles. Inset, Fig. 3.4(b) shows the

correlation energy ∆EC+ = EC+(f) − EC+(0) and energy due to the external electric field ,

ED+(f) = 2fq
∫ L/2
0 zρ(z)dz as functions of f. ∆EC+ increase and peaks around f ≈ 80, then

it decays slowly with increasing f while ED+ increase monotonically with f . The correlation

energy between the particles experience competition with the applied field. The energy cost

of bringing like charges in a domain is compensated by the external electrostatic energy above

fC = 200.

In the transverse plane, the effective interaction (V (++)
eff (r⊥)) between a pair of +ve particles

in presence of other particles is given by the relation: g(++)(r⊥) ∼ exp(−βV (++)
eff (r⊥)). This

leads to V
(++)
eff (r⊥) ∼ −β ln g(++)(r⊥) [38]. Similarly, V (+−)

eff (r⊥) ∼ −β ln g(+−)(r⊥). In Fig.

3.5(a) we show the dependence of V (+−)
eff (r⊥) (Main Panel) and V

(++)
eff (r⊥) (Inset) on r⊥. For

f 6= 0, we observe a peak in V
(+−)
eff (r⊥) and a dip in V

(++)
eff (r⊥) for r⊥ ≈ 0 that grows with

increasing f . This indicates that with increasing f , the system experiences an enhanced effective

attraction between like charge-pairs while an increased effective repulsion between oppositely

charged pairs.

3.4 Cluster-size distribution

We compute the probability of a particle to be a part of a particular cluster of size s. In a

cluster of likely charged particles, we subsequently add particles of the same species within a

critical separation [42] in three dimensions (See Sec. 2.3.1), r(++)
cl (for +ve particles) and r(−−)

cl

(for -ve particles) to obtain the size of the cluster s. This is repeated for all the particles of the

same charge to obtain the cluster size distribution. The probability distribution of the cluster

sizes s, Pcl(s) is computed for a particular value of r(±±)
cl (= 1.4σ). We plot Pcl(s) for the +ve

charges for r(±±)
cl (= 1.4σ) as a function of s for different f in Fig. 3.5(b). For f = 0, Pcl(s)

shows high peak at s = 1 indicating isolated clusters. The situation remains somewhat similar
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Figure 3.5: (a) Effective Interactions: V
(+−)
eff (r⊥) vs r⊥ for f = 50(dashed line),150 (dotted

line)and 300 (bold line) Inset: V (++)
eff (r⊥) vs r⊥ for f = 50(dashed line),150 (dotted line) and

300 (bold line)(b) Dependence of Pcl(s) on s/L for f =50(open circles with solid line), 150(filled

triangles and dot-dashed line) ,300(open triangles and dotted line). Lines are guide to the eyes.

Inset. σ2
cl vs f plot.

for f = 50 when the system is mostly spanned by small clusters. However, for both f = 150

and f = 300, the initial peak in Pcl(s) decreases while the probability increase for higher s.

Average number of attached neighbors < ξcl >∼
∫

(s − 1)Pcl(s − 1)ds excluding the reference

particle. The spread in the distribution is given by σ2
cl =< ξ2

cl > − < ξcl >
2. In Inset Fig.3.5(b),

with increasing f , σ2
cl show a maximum at f = 150.

3.5 Discussion

The tendency in laning is captured via a lane order parameter which show monotonic rise with

increasing field. The single point density plots show the presence of tiny lanes in the pre-lane

state. With increasing field strength, the tiny lanes grow and form lanes of like charges along the

field. The projection of the lanes in the transverse plane show network like structures. The pair

correlation functions quantifies the ordering of these structures. The pair correlation functions
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in the transverse plane show sharp peak at short distance between the opposite charges and a

bulge peak among the particles with same charge at a relatively larger separation. For higher

field strength, higher coordination shells appear indicating increase in particle correlations.

These correlation functions are asymmetric in z and show a power-law decay along the opposite

direction of the field in agreement to observations in Ref. [22]. The correlation energy dominates

over the energy contribution due to the applied field for small field while the lanes are present

in the system, the drift energy overcomes the correlation energy. Hence, the particles align in

lanes along the field for larger strength of the field. Thus, the effective interaction mediated by

the like particles show attraction at short range while repulsion between the opposite charges.

The spread in the cluster size distribution show non-monotonic dependence on the field.

3.6 Conclusion

In this chapter, we consider the microscopic structures in the steady states. In the equilibrium,

the system is homogeneous. The applied field drives the system away from its equilibrium

to non-equilibrium steady states. The system crosses over from homogeneous liquid to state

with patterns: For sufficiently large strength, the systems reaches lane state with network like

structures in the transverse plane proliferated along the field while for intermediate strength, the

system reaches pre-lane state with relatively smaller domains in the transverse plane forming

tiny lanes. This sets our follow up dynamic analysis in three regimes: the homogeneous state

where the electrostatic energy dominates regime and field dominated lane state and, in between

a regime of pre-lane state where the both competes.



Chapter 4

Dynamical Response in Steady States

We explore dynamic responses in terms of self-vHfs and distinct-vHf and relate them to the

underlying structural morphology in non-equilibrium steady states [23] described in Chapter

3. Here, we base our analysis of single particle dynamics using the self-vHf (Sec. 4.1). We

also explore the particle resolve dynamics in Sec. 4.2. In Sec. 4.3, we discuss our results on

distinct-vHfs. We discuss our results in Sec. 4.4 and conclude in Sec. 4.5.

4.1 Self van Hove functions

We focus on the self-vHfs to explore the single particle dynamics. We find that in presence

of non-zero f , G(±)
S (∆z, t) 6= G

(±)
S (−∆z, t) 6= G

(±)
S (∆r⊥, t) where ∆r⊥ = | ~∆r⊥|. The peaks

in G
(±)
S (±∆z, t) shift linearly in t with slope vd ≈ qf/Γ. We account for drift velocity, vd

by transforming to ∆z′ = ∆z − vdt. In Fig. 4.1, we show the dependence of G(+)
S (∆z′, t) on

±∆z′ for different f . For all f , G(+)
S (−∆z′, t) is Gaussian. In contrast, G(+)

S (∆z′, t) behaves

differently: G(+)
S (∆z′, t) is Gaussian for f = 50 [Fig. 4.1(a)], while it has an exponential tail

for f = 150 [Fig. 4.1(b)]close to fc. Increasing f(= 300) further, G(+)
S (∆z′, t) takes the form of

a double Gaussian [Fig. 4.1(c)].

19
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Figure 4.1: lnG(+)
S (∆z′, t) vs ∆z′ for (a)f = 50 (b)f = 150 and (c)f = 300 for t = 0.1τβ

(filled triangles), 1.0τβ (filled circles),10.0τβ (open circles). Exponential (dashed) and Gaussian

(dot-dashed) lines are the fitted curves.

In the transverse plane, G(+)
S (∆r⊥, t) behaves similarly as G(+)

S (∆z′, t). For small f (=50),

G
(+)
S (∆r⊥, t) is Gaussian as shown in Fig. 4.2(a). We find spatially exponential decay tail in

G
(+)
S (∆r⊥, t) as in G

(+)
S (∆z′, t) for f = 150 [Fig. 4.2(b)]. The amplitude of the Gaussian part

relative to that of the exponential tail for large t approaches the ratio Φ(f)/(1−Φ(f)) given in

Sec. 3. 1. This implies that exponential tail develops due to movement of +ve particles in the

neighborhood of −ve particles. Anomalies in self-vHfs have been reported earlier in systems

with competing time scales [44]. Heterogeneous density relaxation in our system is not ruled

out due to formation of domains where the particles near the domain boundary may behave

differently from those inside the domain. The self-vHfs have Gaussian form with double peaks

for f (= 300 > fC) in the fully developed lane phase [Fig. 4.2(c)].

We quantify self-vHf in the transverse plane where structural morphology undergoes distinct

changes shown in Fig. 3.3. We quantify the self-vHfs as follows: The changes in the self-vHf take

place at critical values, ∆r⊥ = rc. We fit the data to a form, exp(−(∆r⊥)2/σ2
⊥(t)) for ∆r⊥ < rc

and exp(−∆r⊥/λ⊥(t)) for ∆r⊥ > rc for f = 150. We restrict our data upto time window
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Figure 4.2: Transverse plane Self-vHfs: lnG(+)
S (∆r⊥, t) vs ∆r⊥ plots for t = 0.1τβ (filled trian-

gles), 1.0τβ (filled circles),10.0τβ (open circles): (a) f = 50; dashed line: Gaussian fit. Inset:

σ2
⊥(t) as a function of t (b)f = 150; dashed line: Gaussian and dot-dashed line: exponential

tail. Inset: λ⊥(t) as a function of t (triangles), dotted line shows λ⊥(t) ∼ ( t
τβ

)0.5.(c)f = 300;

dashed line and dot-dashed line: double Gaussian fits. Inset: Dependences of σ2
⊥(1)(t) (filled

symbols) and σ2
⊥(2)(t) (open symbols) on t. Lines show the best fitted linear curves.

t ≈ 15τβ so that the noisy part of the very long time interval is avoided in the fitting. We fit

G
(+)
S (∆r⊥, t) = A exp(−(∆r⊥)2/σ2

⊥(t)) for ∆r⊥ < rc(t) andG(+)
S (∆r⊥, t) = B exp(−∆r⊥/λ⊥(t))

for ∆r⊥ > rc(t). We minimize χ2 with respect to rc and the fitting parameters. The fitting for

other values of f has also been done similarly. The data fitting for f = 300 has been done by

double Gaussians with width parameters σ2
⊥(1)(t) for ∆r⊥ < rc and σ2

⊥(2)(t) for ∆r⊥ > rc. We

find that rc decreases with t, but saturates to a finite value for at least two decades, implying

that the deviations of dynamical behaviors from normal liquid persist till very long time.

The fitted curves are shown for representative cases in insets Fig. 4.2. Inset, Fig.4.2(a)

shows that σ2
⊥(t) depends linearly on t as in normal liquids for f = 50. Inset, Fig. 4.2(b)

shows λ⊥(t) ∼ t0.5. On the other hand, σ2
⊥(t) ∼ t (data not shown) for f = 150. This is

characteristic of non-Fickian diffusion [44]. The slopes of σ2
⊥(1)(t) and σ2

⊥(2)(t) for f = 300
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show linear dependences on t [ Inset, Fig. 4.2(c)]. Our data indicate presence of two diffusion

coefficients for f = 300.

4.2 Particle resolved picture

The exponential tail has been phenomenologically described in terms of heterogeneity in dif-

fusion [44]. In order to gain microscopic understanding of the dynamic behavior, we pick up

40 particles among the +ve charged particles in the system [49]. The individual particles are

tracked and probability distribution of particle distributions, P (+)(i) (∆r⊥, t) of tagged +ve par-

ticles are computed for each of the tracked particles. The second moments in P (+)(i) (∆r⊥, t),

σ2
(i) (t) =

∫
∆r⊥2P (+)(i) (∆r⊥, t)d2(∆r⊥), are shown in Fig. 4.3(a) for f = 50, f = 150 and

300 respectively. We find different slopes for different particles in the given time window. The

slopes give the self diffusion coefficients, Dr of the tagged particles.

Figure 4.3: (a) σ2
(i)(t) vs t plots for two randomly tagged particles for f = 150 (open symbols)

and f = 300 (filled symbols).(b) P ( Dr
DB

) vs Dr
DB

plots for f = 50 (dotted line with open circles),

150 (solid line with filled squares) and 300 (dotted line with filled circles) Inset: Ω as a function

of f . The dotted line is guide to the eyes.

The diffusivities are collated to obtain the diffusion spectrum, P (Dr/DB). Fig.4.3(b) shows
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the distribution P (Dr/DB) where DB is the bulk diffusion coefficient. We observe a sharp

peak in P (Dr/DB) for f = 50 at Dr ≈ 1.3DB indicating increase in average diffusion in the

transverse plane. The distribution is much broader for f = 150 suggesting the possibility of

multiple close diffusive regimes in the system. P (Dr/DB) gets sharp again at f = 300. There

exists a fast diffusion tail indicating low probability of fast particles in the system. However,

the peak in P (Dr/DB) shifts to lower values of Dr(≈ 0.7DB) which affirms slowing down in the

system due to increasing structural heterogeneity in presence of the field. In order to quantify

the heterogeneity in dynamical response we take the width of P (Dr/DB) around the peak, Ω,

as a measure of heterogeneity in diffusion. Ω has a maximum around f = 150 [Inset. Fig.

4.3(b)]. The mean diffusion,< D > (=
∫
DP (D)dD) ≈ 1.3DB for f = 50. However, < D > is

ill-defined for f = 150. < D > (≈ 0.7DB) corresponding to the peak for f = 300 is lower than

that for f = 50. However, the tail in P (D) for f = 300 corresponds to < D >≈ 2DB which is

higher than that for f = 50.

4.3 Distinct van Hove functions

We examine the distinct van Hove functions for separation r⊥ between two particles in the trans-

verse plane to the field in time interval t. Since, G(++)
D (r⊥, t) = G

(−−)
D (r⊥, t) and G(+−)

D (r⊥, t) =

G
(−+)
D (r⊥, t), we focus on a positively charged colloidal particle. We consider G(++)

D (r⊥, t) be-

tween two +ve charges and G
(+−)
D (r⊥, t) between a +ve and −ve in steady states. At t = 0,

G
(+±)
D (r⊥, 0) = g(+±)(r⊥).

First, we look at the case for f = 50 in Inset Fig. 4.4 (a). At t = 0, G(++)
D (r⊥, t) has a

kink at r⊥ ≈ 2.2 which disappear at t = 10. For G(+−)
D (r⊥, t), the peak is sharper and located

at r⊥ ≈ 1.1 at t = 0. This peak flattens very rapidly with t and disappear at t = 10τβ. For

f = 150, both G(++)
D (r⊥, t) and G(+−)

D (r⊥, t) show few coordination shells at t = 0 which decays

at t = 10[Fig. 4.4(a)]. The peaks in both G(++)
D (r⊥, t) and G(+−)

D (r⊥, t) at t = 0 shifts to higher

values in r⊥ for f = 300 and persists (t = 10τβ). Higher coordination shells are seen in both

the cases at both t = 0 and t = 10τβ [Fig. 4.4(b)].

The wave-vector (q⊥) dependent distinct-vHfs, G(+±)
D (q⊥, t) are obtained by taking a Fourier

transform of G(+±)
D (r⊥, t) for each t. G(++)

D (q⊥, t) show a maximum at q⊥ ≈ q0 and G(+−)
D (q⊥, t)

has a dip at t = 0. With increasing t, both the peak and the dip decays. We show the evolution

of both G
(++)
D (q⊥, t) and G

(+−)
D (q⊥, t) for f = 150 as a function of q⊥ at t = 0 and t = 10τβ

in Fig. 4.5(a). In order to obtain the structural relaxation, we track the decay of the peak

in G
(++)
D (q⊥, t) and dip in G

(+−)
D (q⊥, t) with t. We quantify this by C

(++)
0 (t)[= G

(++)
D (q0,t)−1

G
(++)
D (q0,t=0)−1

]
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Figure 4.4: (a) G(++)
D (r⊥, t) (lower curves) and G

(+−)
D (r⊥, t) (upper curves, with vertical offset

1.0) as functions of r⊥ for t = 0 (solid line) and t = 10τβ (dashed line) for (a) f = 50 (Inset),

f = 150 (main panel) and (b) f = 300

and C
(+−)
0 (t)[= 1−G(+−)

D (q0,t)
1−G(+−)

D (q0,t=0)
]. We show these quantities in Fig. 4.5(b) in semi-logarithmic

plots. The plots show that the relaxation of +ve particles in the neighbourhood of other

−ve particles (denoted by C
(+−)
0 (t)) is slower than that in the vicinity of other +ve particles

(denoted by C
(++)
0 (t)). We observe that the decay is exponential in t in general indicating

diffusive relaxation [38], except for, −lnC(+−)
0 (t) ∼ t0.75 for f = 150, implying a slow stretched

exponential relaxation.

The slow relaxation could be understood as follows: The Vineyard approximation [38, 50]

implies that, G(+±)
D (q0, t) ≈ G

(+)
S (q0, t)S(+±)(q0) where S(+±)(q0) are the structure factors, the

fourier transforms of the respective PCFs . Here,

C
(+±)
0 (t) ≈ G

(+)
S (q, t), (4.1)

for all q. Here, G(+)
S (q, t) =

∫
G

(+)
S (r, t)ei~q.~rd~r. Since S(+±)(q0) does not depend on t, the time

dependence of C(+±)
0 (t) will come from G

(+)
S (q0, t) which we analyze here. Our simulations

indicate that G(+)
S (q0, t) = G

(N)
S (q0, t) + Φ

1−ΦG
(T )
S (q0, t). Let us consider, C0(t) ≡ C

(+±)
0 (t) ≈

G
(+)
S (q, t)

Let,

lnC0(t) = G
(N)
S (q0, t)− Cr(t) (4.2)
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Figure 4.5: Dependences of G(++)
D (q⊥, t) (upper curves, with vertical offset 0.1) and G(+−)

D (q⊥, t)

(lower curves) on q⊥ for f = 150 for t = 0 (solid line) and t = 10τβ (dashed line). (b)

Dependences of−lnC(++)
0 (t) (open symbols) and−lnC(+−)

0 (t) (filled symbols) on t/τβ for f = 50

(squares), f = 150 (circles) and f = 300 (triangles). Lines show the fitted curves.

where G(N)
S (q0, t) is the Gaussian component and Cr(t) is a correction due to the tail in

GS(q0, t)

Taking logarithm on both sides and assuming the correction be small, one can write to the

first order,

C0(t) ≈ G
(N)
S (q0, t)−

Cr(t)
G

(N)
S (q0, t)

. (4.3)

One can as well write,

lnC0(t) ≈ lnG
(N)
S (q0, t) + ln[1 + Φ

1− Φ
G

(T )
S (q0, t)

G
(N)
S (q0, t)

] (4.4)

Comparing (4.3) and (4.4) we obtain,

−Cr(t) ∼
Φ

1− ΦG
(T )
S (q0, t) (4.5)
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In 2 Dimensions,

G
(T )
S (q0, t) ∼

∫ ∞
rc

e−r/λ(t)J0(q0r)rdr (4.6)

Substituting ζ = r/λ and using J0(q0r) ∼ 1√
q0r

in (4.6) one gets,

G
(T )
S (q0, t) ∼ λ3/2(t)

∫
ζ−1/2e−ζdζ (4.7)

Here, the ζ integral gives a constant and using λ(t) ∼ t0.5, we get Cr(t) ∼ t0.75 so that

−lnC0(t) ∼ t0.75. (4.8)

4.4 Discussion

Dynamic slowing down has been observed in super-cooled systems [51, 52]. However, the slow

dynamics in such systems is due to caging of the particles by their neighbours [53]. In contrast,

the individual particle motions here are always diffusive. However, the diffusion has heterogene-

ity. This heterogeneous diffusion implies the heterogeneity in transport processes. There exist

complex systems, where anomalies in dynamical responses have been ascribed phenomenologi-

cally to heterogeneity in diffusion [44, 51, 54–57]. In such attempts, the diffusion spectrum has

been obtained by deconvolution of the self-vHfs using Lucy iterative method [44,58]. Here, we

obtain the diffusion spectrum from single particle tracking data itself.

4.5 Conclusions

The single particle dynamics has been probed using different the spatio-temporal correlation

functions. The lateral self vHf is asymmetric and shifts with time due to drift for non-zero field.

Both lateral and transverse self-vHf crosses over from a Gaussian form in homogeneous state

to double Gaussian form in the lane state via that having exponential tail in pre-lane state.

The exponential tail is observed when the diffusion spectrum is broad. There is heterogeneity

in single particle diffusion. Moreover, the tails lead to slow structural relaxation. These results

can be verified by measuring vHfs through experiments using nutron scattering.



Chapter 5

Structural Relaxation in Steady States

The structural changes in a binary mixture of opposite charges by application of electric field

are given in Chapter 3. The vHfs show heterogeneity in diffusion given in Chapter 4. Here,

we extend our analysis on the structural relaxation in the steady states [26]. We discuss our

analysis based on the Overlap Function and Dynamical Susceptibility (Sec. 5.1) followed by

distinct vHfs between fast and slow relaxing particles (Sec. 5.2). We include a discussion in

Sec. 5.3 and we conclude in Sec. 5.4. The detailed methods of our analysis is given in Chapter

2.

5.1 Overlap Function

The diffusion spectrum in Chapter 4 for different f indicates the slowing down in dynamics.

The Overlap function has been very successfully tested in glass forming systems in explaining

the slowing down. We adapt the formalism in order to analyse the slowing down. We compute

self-overlaps between particle configurations in the transverse plane, separated by time t, q̃(±)
(⊥)(t)

for both +ve and −ve charges respectively. Both charges behave identically, so we focus on

q̃
(+)
(⊥)(t). The probability distribution function of q̃(+)

(⊥)(t) over different configurations is given

by P (q̃(+)(t)). We observe P (q̃(+)
(⊥)(0)) ∼ δ(q̃(+)

(⊥)(0) − N+). For t 6= 0, the peaks in P (q̃(+)
(⊥)(t))

shift with increasing t. In Fig. 5.1(a) we show the dependence of P (q̃(+)
(⊥)(t)) for various f for a

typical t = 0.05τβ. Form small t, P (q̃(+)
(⊥)(t)) is a Gaussian. For f = 50, at t = 0.05, P (q̃(+)

(⊥)(t))

has a peak at q̃(+)
(⊥)(t) ≈ 0.89. This peak shifts to lower values of q̃(+)

(⊥)(t) (≈ 0.87) for f = 150 and

then again shifts to the higher values of q̃(+)
(⊥)(t)(≈ 0.91) for f = 300 indicating a non-monotonic

trend.

The Overlap Function [41] is given as,

27
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Q
(+)
(⊥)(t) ∼

∫
q̃

(+)
(⊥)(t)P (q̃(+)

(⊥)(t))dq̃
(+)
(⊥)(t)). (5.1)

For all f , Q(+)
(⊥)(0) = 1 and they decay monotonically with t [Fig. 5.1(b)]. However, the decay

rates in Q
(+)
(⊥)(t) vary with the strength of f . f = 50 shows a relatively fast decay in Q

(+)
(⊥)(t).

The rate decrease with f indicating a slowing down in the transverse plane as in Ref. [14]. For

f = 300, we observe that Q(+)
(⊥)(t) ≈ 0.25 which is twice the value (≈ 0.12) of that for f = 50

at t = 1.0τβ. We find an intermediate value (≈ 0.18) in Q
(+)
(⊥) for f = 150. Also there exists

a crossover in Q
(+)
(⊥). For f = 50, Q(+)

(⊥)(t) ∼ tα where α ≈ −0.86. We find Q
(+)
(⊥)(t) ∼ e−t

−β

in the time window 10τβ < t < 40τβ for f = 150 with β ≈ 0.37[Inset. Fig. 5.1(c)]. Q
(+)
(⊥)(t)

shows a power law dependence, like in aggregating liquids [45] with α ≈ −0.52 for f = 300 for

1τβ < t < 20τβ (Fig. 5.1(c)).

Figure 5.1: (a) Distribution of Overlaps, P (q̃(+)
(⊥)(t)) for different q̃(+)

(⊥)(t) is shown for t = 0.05τβ:

f = 50 (open circles), f = 150 (filled squares) and f = 300(open triangles). Lines show the

fitted Gaussian curves. (b) Dependences of Q(+)
(⊥)(t) on t for three regimes: fast-segregation

f = 50 (dotted line), mixed relaxation f = 150 (dashed line) and slow relaxation f = 300

(solid line) (c) lnQ(+)
(⊥)(t) vs ln(t/τβ) for f = 300. Inset. ln(lnQ(+)

(⊥)(t)) vs ln(t/τβ) for f = 300

(d) Dynamical Susceptibility, χ(+)
4 (t) for three regimes: f =50 (dotted line),150 (dashed line)

and 300 (solid line)
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In order to understand the structural responses we compute the dynamical susceptibility,

χ
(±)
4 (t) which is given in terms of the fluctuations in Q(t) [40, 41],

χ
(±)
4 (t) =< Q(±)2(t) > − < Q(±)(t) >2 . (5.2)

It peaks at t = τ4 which is proportional to the structural relaxation time, τ [41]. We show

the evolution of χ(+)
4(⊥)(t) with t for different f in Fig. 5.1(d). For f = 50, the peak in χ

(+)
4(⊥)(t)

shifts to lower value of t than that for f = 0 indicating phase segregation due to the faster

relaxation. For f = 150, χ(+)
4(⊥)(t) grows and has a broad peak, showing the coexisting time-

scales of structural relaxation with comparable magnitudes in the system. On increasing f

further, χ(+)
4(⊥)(t) shows two distinct peaks for f = 300 depicting heterogeneity.

In the homogeneous state, the dynamics is entirely governed by the fast particles driven by

the field. The peak in χ(+)
4(⊥)(t) for f = 50 corresponds to relaxation by the faster particles in the

system. In contrast, the slow dynamics in the lane state is associated with the particles in the

proliferated lanes. This results in the predominant peak in χ(+)
4(⊥)(t) at higher t for f = 300 while

the peak at lower t is entirely due to the fast particles. The dynamics in the intermediate state

experiences a competition between the two. Hence, the broadening in χ(+)
4(⊥)(t) for f = 150. This

is consistent with the data of heterogeneity in structural relaxation in the pre-lane state [23].

5.2 Relaxation of the partial structures

We find that the heterogeneity in diffusion spectrum maximized in the pre-lane state [See Fig.

4.3 ]. This indicates the possibility of multiple time-scales of relaxation due to simultaneous

presence of slow and fast relaxing particles. We identify the slow and fast relaxing particles.

We compute the probability distribution of square of the particle displacements, P (∆r2
⊥, t), in

the transverse plane in a given time interval, t. We observe P (+)(∆r2
⊥, t) ≈ P (−)(∆r2

⊥, t)(=

P (∆r2
⊥, t)). At t = 0, P (∆r2

⊥, t) has a peak at ∆r2
⊥ = 0. We plot P (∆r2

⊥, t) with ∆r2
⊥ for

f = 150(Main Panel) and f = 300(Inset) in Fig. 5.2(a). For t > 0, the the peaks in P (∆r2
⊥, t)

is located at ∆r2
⊥ = ∆RP with value ∆Pv. With increasing t, we observe that the peak at ∆RP

shifts to the higher values of ∆r2
⊥ while ∆Pv decays due to diffusion [Figs. 5.2 (b) and (c)]. The

decay rates depend on the strength of f . This trend is similar to the decay of Q(+)
(⊥)(t) and the

distinct van Hove functions as in Ref. [23], affirming the increase in transverse plane slowing

down in the system. In order to identify the fast and slow relaxing particles within a particular

species, we tag particles as ”slow relaxing” particle (S) if it has square of the displacement

∆r2
⊥(t) < ∆RP (t) in the time window t. Similarly we tag the particles as ”fast relaxing” (F) if
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∆r2
⊥(t) ≥ ∆RP (t). Thus we count the no F and S particles (N (+)

F (t) and N
(+)
S (t) respectively)

of +ve and −ve charges respectively in a given time interval t.

Figure 5.2: (a) P (∆r2
⊥, t) vs ∆r2

⊥ for t = 0.25τβ(solid line), 12.5τβ (dashed line)and =

25τβ(dotted line) for f = 150 (Main Panel) and f = 300 (Inset) (b)Dependence of ∆RP

on t for f = 50(dotted line), f = 150(dashed line) and f = 300(solid line). (c) ∆Pv vs t for

f = 50(dotted line), f = 150(dashed line) and f = 300(solid line).

Since the system consists of S and F particles of +ve and −ve charges, there exist vari-

ous possibilities structural correlation between two particles can relax. For example, among

+ve charged particles, the way a S particle relaxes in the vicinity of other S particles may be

different to from that in the vicinity of F particles. Thus, there exists six such possibilities.

We now analyze the density relaxation of these structures via different distinct van Hove func-

tions: G(++)
D(S,S)(r, t), G

(++)
D(F,S)(r, t), G

(++)
D(F,F )(r, t), G

(+−)
D(S,S)(r, t), G

(+−)
D(F,S)(r, t) and G

(+−)
D(F,F )(r, t). The
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Figure 5.3: (a)C(+−)
(F,F )(t), (b)C(++)

(F,F )(t),(c) C(+−)
(F,S)(t), (d)C(++)

(F,S)(t) (e) C(+−)
(S,S) (t) (f)C(++)

(S,S) (t) as a

function of t for f = 50(filled squares, shown with vertical offset 2), f = 150(filled triangles,

shown with vertical offset 1) and f = 300 (filled circles). Solid, dashed and dotted lines show

fitted lines for f = 50(shown with vertical offset 2), f = 150 (shown with vertical offset 1) and

f = 300 respectively.

respective Fourier transforms of these quantities are given by G(+±)
D(S,S)(q⊥, t), G

(+±)
D(F,F )(q⊥, t) and

G
(+±)
D(F,S)(q⊥, t). The decay profiles of the peaks in G

(++)
D (q⊥, t) and dips in G

(+−)
D (q⊥, t) at wave

vector q0 is given as

C
(+±)
(M,N)(t) =

±G(+±)
D(M,N)(q0, t)∓ 1

±G(+±)
D(M,N)(q0, 0)∓ 1

(5.3)

as in Ref. [23]. Here M and N are indices that stand for both S and F .

We find C
(+±)
(M,N)(t) ∼ exp(−t/τ (+±)

(M,N)) (fits are shown in Fig. 5.3(a-h) ) where the the

timescales of relaxation are given by τ
(+±)
(M,N) and are shown in the main panel of Fig. 5.4.

For f = 50, we find τ
(++)
(F,F ) < τ

(+−)
(F,F ) < τ

(+−)
(F,S) < τ

(++)
(F,S) < τ

(+−)
(S,S) < τ

(++)
(S,S) . The trend changes for

f = 150 as τ (++)
(F,S) ≈ τ

(+−)
(F,F ) and τ

(++)
(F,S) < τ

(+−)
(F,S) . However, these timescales are relatively close in
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Figure 5.4: τ (++)
(F,F ), τ

(++)
(F,S) , τ (++)

(S,S) , τ (+−)
(F,F ), τ

(+−)
(F,S) and τ (+−)

(S,S) for f = 50, f = 150 and f = 300. Inset:

Dependence of Ω on f

magnitudes. However, for f = 300, we observe τ (++)
(F,F ) < τ

(+−)
(F,F ) < τ

(++)
(F,S) < τ

(+−)
(F,S) < τ

(+−)
(S,S) < τ

(++)
(S,S) .

Here, τ (+±)
(S,S) increase significantly with increasing f . The measure of heterogeneity is given

by Ω = 1
(στ/µτ ) with σ2

τ = ∑
M,N(τM,N − µτ )2 and µτ = 1/6 ∑

M,N τM,N , the mean relaxation

time. Ω show non-monotonic dependence on f [Inset. Fig. 5.4], like similar non-monotonic

behaviour in σ2
cl. This is also quite similar to the behavior of heterogeneity in diffusion in the

same system [23].

5.3 Discussion

Reports [11, 20] show that the laning transition is accompanied by an initial increase in the

diffusion. The increasing drift enforces the particles to move through lanes. But the particle

motion in the transverse direction decrease as the bigger lanes starts to appear. This is due

to the increasing effective attraction between the like charges and repulsion between the cross

charges. The particles in the same lane cause the slow dynamics while the cross-lane movements

are associated with faster diffusion. In the homogeneous state, the pre-dominant attraction

between the opposite charges results into the faster diffusion while in the lane state, the inter-

lane movements become low probable leading to a slowing down. The state for intermediate

strength of the field experiences a competition between the two movements. Hence, we observe

the onset of multiple time-scales in the system. This leads to anomalous dynamical responses

in the pre-lane state [23]. We observe the separation of time-scales in the lane state via the

double peaks in χ4(t). The double peaks in χ4(t) has been previously seen in super-cooled

liquids and it has been linked with short time β-relaxation [59] where the time-scales of the
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slow and fast particles are widely separated.

5.4 Conclusion

In conclusion, in a driven mixture of oppositely charged colloid, we characterize slowing down

accompanied by the presence of partial structures between slow and fast relaxing particles

which relax at distinct rates. Earlier in super-cooled systems, possibility of such structures

was predicted by Donati-GlotzarPoole-Kob-Plimpton [60] in exploring dynamic heterogeneity

which occurs when different parts of a system relaxes at diffrent rates. The existence of these

partial structures could be verified in using scattering experiments.



Chapter 6

Transient Response

So far we have considered the interplay between structure and dynamics in steady states in

Chapter 3-5. Here we focus on the transient response as the heterogeneous steady states set in

from homogeneous equilibrium state in the presence of a constant electric field [27]. We first

equilibrate the system without electric field from random configurations for 50τβ. Then we

switch on the electric field f in z−direction to drive the system far from equilibrium. The field

is kept on for 15τβ so that for all f (within the observation window), the system reaches steady

state. We calculate different quantities tw time after the field is switched on. All the dynamical

quantities depend on tw. We also study the case where the field is switched off to let the system

relax back to the equilibrium state. Since the system evolves with time, the averaging is done

for a given time over the Brownian trajectories. This also forces us to simulate a bigger system

for better statistics.

In this chapter, we discuss growth of heterogeneous structure in Sec. 6.1. The transient

dynamical response and Aging in transient state have been discussed in Sec. 6.2 and 6.3

respectively. We analyze relaxation of heterogeneous structures in Sec. 6.4. We discuss our

results in Sec. 6.5 and we conclude in Sec. 6.6.

6.1 Growth of Heterogeneous Structures

The formation of lanes are monitored via lane order parameter [17], Φ(tw) (See Chapter 2). In

equilibrium, we observe that Φ = ΦEq ≈ 0.56 given in Chapter 3 [23]. As soon as the field is

turned on, we monitor ∆Φ(tw)(= Φ(tw)−ΦEq) with tw. In Fig 6.1(a), we show the dependence

of ∆Φ(tw) on tw. For f = 50, ∆Φ(tw) fluctuates around zero. For f = 150, ∆Φ increase and

reaches at a steady value ∆ΦS ≈ 0.1 in time τS ≈ 2.4τβ. For f = 300, we observe a rapid

increase in ∆Φ, approaching ∆ΦS ≈ 0.25 with τS ≈ 1.1τβ.

34
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We consider the plane transverse to the electric field which shows morphological changes in

the steady states [23,26]. We focus on +ve charges, as both the species behaves similarly. The

changes in structural morphology with tw are monitored by the coarse-grained local particle

distribution in the transverse plane, ρ(+)(r⊥; tw) (= 1
N+

∑N+
i=1 δ(| ~r⊥(tw) − ~Ri⊥(tw)|)) for a given

trajectory. We discuss the case of a representative trajectory. We consider three representative

values of tw: tw = 0 corresponds to the system in equilibrium, tw = τS
2 denotes time that

the system is evolving to the steady states; and tw ≥ τS where the system is in steady state.

ρ(+)(r⊥; tw) is homogeneous for tw = 0 for all f [Fig. 6.1(b)]. For f = 50, similar homogeneous

structures is retained for all tw(data not shown). For f = 150, there are small domains at

tw = τS
2 [Fig. 6.1(c)] and form isolated bigger domains at tw = τS[Fig. 6.1(d)]. Isolated

large domains are observed in ρ(+)(r⊥; tw) at tw = τS
2 for f = 300 [Fig. 1(e)]. These domains

proliferate to form connected domains at tw ≈ 2τS [Fig. 6.1(f)].The other trajectories show

similar behavior.

Figure 6.1: (a) Development in Laning tendency via the lane order parameter, ∆Φ with tw for

f = 50 (dotted line), f = 150 (solid line, in black) and f = 300(dashed line, in grey). (b-f)

ρ(+)(r⊥; tw), for (b) tw = 0 (c) f = 150, tw = 1.2τβ (d) f = 150, tw = 2.4τβ (e) f = 300,

tw = 0.55τβ (f) f = 300, tw = 7.5τβ
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6.2 Transient Dynamical Response

Now we analyze in-plane single particle dynamics via evolution of self-vHfs between time tw
and tw + t, given as G(+)

S (r⊥; t, tw)(=< ∑N(+)

i=1 δ[r(⊥)(tw) + | ~Ri⊥(tw + ∆t) − ~Ri⊥(tw)|] >). This

quantity is averaged over the Brownian trajectories. We consider three typical values of t

for three representative cases of tw (tw = 0,tw ≈ τS
2 and tw >> τS). We consider the cases

f = 150(Fig. 6.2) and f = 300 (Fig. 6.2) where the in-plane structural changes are significant.

Let us consider the case for f = 150. G(+)
S (r⊥; t, tw) is Gaussian in r⊥ for all t at tw = 0 [Fig.

6.2(a)]. For tw ≈ τS/2, we observe that G(+)
S (r⊥; t, tw) has an exponential tail around t = τβ.

However, the tail disappears and G
(+)
S (r⊥; t, tw) reverts back to Gaussian at t = 10.5τβ [Fig.

6.2(b)]. G
(+)
S (r⊥; t, tw) has exponential tail at tw = 7.5τβ > τS for t = 0.1τβ, t = 4τβ and

t = 6τβ [Fig. 6.2 (c)]. For f = 300, G(+)
S (r⊥; t, tw) is Gaussian at tw = 0 for all t[Fig. 6.3(a)].

At tw ≈ τS
2 , G(+)

S (r⊥; t, tw) is double-Gaussian in r⊥ at t(= 6τβ) [Fig. 6.3(b)]. This double

Gaussian behavior remains for all t in the steady state (tw = 7.5τβ >> τS) [Fig. 6.3(c)].

In order to quantify the behavior of G(+)
S (r⊥; t, tw)], we fit lnG(+)

S (r⊥; t, tw) ∼ −r2
⊥/σ

2
(⊥)(t, tw)

for r⊥ < rC(t, tw) and lnG(+)
S (r⊥; t, tw) ∼ aT (t, tw) − r⊥/λ(⊥)(t, tw) for r⊥ ≥ rC(t, tw) for

f = 150. Similarly, for f = 300 lnG(+)
S (r⊥; t, tw) ∼ −r2

⊥/σ
2
(⊥)(1)(t, tw) for r⊥ < rC(t, tw)

and lnG(+)
S (r⊥; t, tw) ∼ aG(t, tw) − r2

⊥/σ
2
(⊥)(2)(t, tw) for r⊥ ≥ rC(t, tw). We follow the fitting

procedure as in Chapter 4.

We show aT (t, tw) and aG(t, tw) as function of t for different tw in Figs.6.4(a) and (b)

respectively. At tw = 0, aT (t, tw) show scattering [Inset Fig. 6.4(a)] where G(+)
S (r⊥; t, tw) is a

Gaussian. When the tail is insignificant, rC(t, tw) shifts to large values of r⊥. In such cases,

the fitting to the linear part becomes numerically unreliable and leads to large or small values

of the amplitudes. Thus, scattered values in aT (t, tw) may be taken as indicative of absence of

exponential tail. For small tw ≈ 0.1τS, aT (t, tw) decays with t. However, for t ≈ 5τβ, aT (t, tw)

show scattering indicating insignificant tail. For tw ≈ 0.25τS, aT (t, tw) decays with t and gets

scattered at t ≈ 8.7τβ.Thus, the exponential tail becomes insignificant for large t for a given tw
although the tail stays longer with increasing tw. We find σ⊥(t, tw) is linear in t. We examine

λ(⊥)(t, tw) over time where the tail part of the self-vHf exists. In the steady states (tw >> τS),

we observe λ2
(⊥)(t, tw) ∼ t [main panel in Fig. 6.4(b)] indicating non-Fickian diffusion [44]. This

is in agreement to our earlier result [23].

Similarly, for f = 300, aG(t, tw) shows scattering at tw = 0 [Inset Fig. 6.4(c)] where

G
(+)
S (r⊥; t, tw) is a single Gaussian. At tw = 0.1τS, aG(t, tw) show scattering at t ≈ 12τβ

indicating that the second Gaussian becomes insignificant. However, for higher tw, we do



CHAPTER 6. TRANSIENT RESPONSE 37

Figure 6.2: lnG(+)
S (r⊥; t, tw) as function of r⊥ for f = 150 for t = 0.1τβ (open triangles), t = 4τβ

(solid triangles) and t = 6τβ (open circles) at (a)tw = 0 (b) tw = 1.2τβ (c) tw = 7.5τβ. Dotted

and solid lines show Gaussian and Exponential fits respectively.

not observe any scattering within our observation window. In all these cases, G(+)
S (r⊥; t, tw)

remains double Gaussian with two different widths (Inset. Fig. 6.4(c)]. Thus, the double

Gaussian nature persists for longer time with increasing tw.

6.3 Aging in transient state:

We compute the mean squared displacements in the transverse plane, < r2
⊥(t, tw) > (=∫

r2
⊥G

(+)
S (r⊥; t, tw)dr⊥) for different tw. We show the plots of < r2

⊥(t, tw) > for two typical

cases of tw for both f = 150 (main panel) and f = 300 (inset) in Fig. 6.4(d). For f = 150,

< r2
⊥(t, tw) > show changes in the slope with t for tw = 0. For tw ≈ 3τS, < r2

⊥(t, tw) >∼ t.
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Figure 6.3: lnG(+)
S (r⊥; t, tw) as function of r⊥ for f = 300 for t = 0.1τβ (open triangles), t = 4τβ

(solid triangles) and t = 6τβ (open circles) at (a)tw = 0 (b) tw = 1.2τβ and (c) tw = 7.5τβ Dotted

and solid lines show two Gaussian fits with different widths respectively.

The data for f = 300 are shown in the inset. < r2
⊥(t, tw) > show different slopes with t then

steadily increase with t for both tw. However, for tw ≈ 3τS, < r2
⊥(t, tw) > increase linearly with

t.

The slopes of < r2
⊥(t, tw) > gives diffusion, D(t, tw) in between tw and tw + t. In Fig.6.5(a)

we plot D(t,tw)
DB

as a function of t for different tw for f = 150. Here DB stands for the self-

diffusion coefficient in the equilibrium state. We observe D(t, tw) ≈ 3.5DB for t ≈ 0 at tw = 0

and decreases to the steady value DS ≈ 1.2DB for t ≈ 2.0τβ. This time is comparable to

τS. At higher tw, there is a decrease in D(t, tw) at low t and decreases further with tw and

reaches D(t, tw) ≈ DS at tw ≈ τS. As tw ∼ τS, the dependence of D(t, tw) on t disappears

and D(t, tw) ≈ DS for all t in this case. The decrease in D(t, tw) with t for a given tw implies

slowing down with time. The extent of slowing down depends on waiting time of observation
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suggesting that the system shows aging which persists till it reaches structural steady state. As

the system evolves from homogeneous liquid to the pre-lane state with larger domains of like

charges with increasing tw [Fig. 6.1], the system undergoes slowing down. This is reflected in

statistical correlation between D(t, tw) and ∆Φ [Inset, Fig. 4(a)]. We observe that D(t ≈ 0, tw)

decrease with increase in ∆Φ.

Similar behavior has been observed for f = 300. At tw = 0 and t ≈ 0, D(t, tw) ≈ 5DB

which decrease rapidly with increasing t[Fig. 6.5(b)] and reaches steady value (DS ≈ 0.6DB)

at t ≈ τS. For tw = 0.25τβ, D(t, tw) ≈ 3.5DB for t ≈ 0 and the steady value is reached around

the same timescale. For tw ≈ τS, we observe D(t, tw) ≈ DS for all t. Here also we observe

that the signature of aging till the steady state is reached. We observe there is a decrease in

D(t ≈ 0, tw) as the lanes appear in the system indicating increase in ∆Φ [Inset. Fig. 6.5(b)].

Figure 6.4: (a) aT (t, tw) as a function of t for τS = 0.1τS (open circles), τS = 0.25τS (filled

triangles, with vertical offset 3), τS = 2τS (open triangles, with vertical offset 6) and τS =

0 (filled circles, in Inset) (b)λ2
(⊥)(t, tw) vs t for tw = 2τS(open circles) and tw = 3τS(filled

triangles).(c)aG(t, tw) as a function of t for τS = 0.1τS (open circles), τS = 0.25τS (filled

triangles, with vertical offset 3) Inset. σ2
(⊥)(1) (circles) and σ2

(⊥)(2) (triangles) as a function of

t for tw = τs (open symbols) and tw = 2τs (filled symbols) (d)< r2
⊥(t, tw) > vs t for f = 150

(main panel) and f = 300 (inset) for tw = 0(open circles) and tw = 3τS (filled triangles).
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Figure 6.5: Dependence of D(t, tw)/DB on t for tw = 0 for (a)f = 150 and (b)f = 300 during

growth of structure: tw = 0.25τβ (filled circles), tw = 0.5τβ (open triangles), tw = 1.0τβ (filled

triangles) and tw = 1.5τβ (open inverted triangles). Insets. (a-b) D(t ≈ 0, tw)/DB vs ∆Φ for

(a) f = 150 (b) f = 300. D(t, tw)/DB vs t for tw = 0 for (c)f = 150 and (d)f = 300 during

relaxation of structure: tw = 0.25τβ (filled circles), tw = 0.5τβ (open triangles), tw = 1.0τβ
(filled triangles) and tw = 1.5τβ (open inverted triangles). Lines are guide for the eyes.

6.4 Relaxation of Heterogeneous Structures

We also study the relaxation to equilibrium from the steady states at f = 150 and f = 300

by withdrawing the external field. Here ∆Φ approaches zero with increasing tw with timescale

τRS ≈ 1.1τβ for the lane state and that around τRS ≈ 1.3τβ from the pre-lane state (data

not shown). As the states approach equilibrium, G(+)
S (r⊥; t, tw) is Gaussian for all tw, quite

unlike the dynamical behavior during approach to non-equilibrium steady states in presence

of field. We show D(t, tw) for different values of tw for f = 150 in Fig. 6.5(c). For small

tw, D(t, tw) ≈ 2.15DB at t ≈ 0. D(t, tw) decreases with increasing t and saturates around

D(t, tw) ≈ DB at t close to 2τβ. The dependence of D(t, tw) on tw is not significant in contrast

to the growth case and does not show any tw dependence in D(t, tw)[Fig. 6.5 (d)]. In all

the cases, the initial relaxation is fast followed by a slower relaxation in the vicinity of the
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equilibrium state.

6.5 Discussion

We observe aging in lane forming binary colloids. Earlier, aging has been observed in super-

cooled liquids [53] accompanied by slowing down in dynamics where the dynamical quantities

depend on time of observation. The aging in our system is a transient phenomenon and lasts

till the steady state is reached and connected to emergence of structural heterogeneity. The

onset of structural heterogeneity is known as pattern formation [9]. Patterns are stabilized by

competing inter-particle interaction as present in our system. Non-equilibrium patterns are rel-

evant in variety of systems which are often described by coarse-grained models [9]. Microscopic

calculations on pattern forming systems are not yet abundant: computer simulations on micro-

scopic models have been performed on equilibrium patterns in binary mixture with competing

interaction [61] and non-equilibrium pattern in glassy system under external perturbation [62].

There is a qualitative difference in the single particle dynamics of a glassy system and that of

ours. In glassy systems the single particle dynamics is dominated by caging [53] due to neigh-

boring particles. In contrast, the single particle dynamics in lane forming colloids is diffusive,

albeit with heterogeneity in diffusion [23]. Such heterogeneous single particle dynamics is found

in a variety of systems with complex interaction [44]. Our results are thus not only relevant in

the context of lane formation but also would be pertinent in the emergence of patterns in soft

matter systems with competing interaction under drive. This situation is often encountered in

areas of rheology, micro-fluidics and bio-molecular systems [10].

The diffusion coefficients show slowing down in the transient conditions. The onset of het-

erogeneous structure shows aging in the transient state, while relaxation of structure proceeds

without aging. Thus, the structural growth and relaxation takes place via different dynamical

paths. This suggests inherent non-equilibrium nature of the transient responses.

6.6 Conclusion

We observe that the lane order parameter increases with tw as the lanes grow in the system.

The coarse grained particle distributions in the transverse plane shows growing domains with

increasing tw. We observe that the self-vHfs in the equilibrium state is Gaussian. As the system

evolves, the self-vHfs develop exponential tail much before the steady pre-lane state sets in.

Similarly, the self-vHf becomes double Gaussian before the laning is complete for larger field
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strength. The time-dependent diffusion coefficients, are computed from the slopes of mean

squared displacements, decreases with tw. This behavior persists till the system attains steady

state, suggesting aging in the system in the transient condition. When these steady state

structures relax back to equilibrium upon withdrawal of the external electric field, the self-

vHfs are Gaussian without any anomalous behavior. Our results could be verified by nutron

scattering experiments on binary colloids and are expected to provide microscopic insights to

pattern formation away from equilibrium.



Chapter 7

Dynamic Length-scales

The transient responses during the formation of lanes have been considered in chapter 6. In

this chapter we consider the development of particle correlations during the formation of the

lanes [28]. The particle correlations are described in terms of equal time density correlation

functions (ETDCF). The ETDCFs in the transverse plane at time tw is defined as g(~r, tw) =

(1/N2) <
∑N
i=1

∑
j 6=i δ(~r + ( ~Rj(tw) − ~Ri(tw))) >. Here <> implies averaged over the BD

trajectories. We discuss the development in structural correlation in Sec. 7.1 and length-scales

of correlation among different mobilities is discussed in section 7.2.

7.1 Length-scale of Structural Correlations

The equilibrated system for tw = 0 is shown via the particle snapshots in the XY plane,

transverse to the applied field in Fig. 6.1(a). Here, no significant structure is observed. How-

ever, as soon as the field (f = 300) is turned on, the structure undergoes changes.At small

tw(≈ 0.9τβ), the tiny domains are observed [Fig. 6.1(e)]. The particles form network like pat-

terns at tw = 10τβ [Fig. 6.1(f)]. The structural changes in the transverse plane take place

concurrently with the growth of the lane order parameter, defined in Sec. 2.3.2 in the system.

The lane order parameter (Φ), defined in [17], ∆Φ(tw)(= Φ(tw) − Φ(0)) reaches steady value

(≈ 0.25) at τS ≈ 1.2τβ [shown in Fig.6.1 (a)]. τS sets a natural timescale in the system.

Since both the charges behave similarly, we focus on the +ve charged particles. The ETDCFs

between two +ve charges is given by g(++)(r⊥; tw) and that between two opposite charges

g(+−)(r⊥; tw). There is a peak in g(++)(r⊥; tw) at r⊥ ≈ 0, for all tw. We denote this peak value

by g(++)(0). The alignment into lanes in z-direction is quantified via g(++)(0). This quantity

increases ( g(++)(0) ≈ 8 at tw ≈ 1.3τβ) with increasing tw and finally saturates, [Inset. Fig.

7.1(a)] indicating that the system has reached the lane state. We show g(++)(r⊥; tw) for r⊥ 6= 0

43
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in Fig. 7.1(a) for different tw. At tw = 0, g(++)(r⊥; tw) no other peak for non-zero r⊥ is observed.

With increasing tw,(≈ 0.2τβ), g(++)(r⊥; tw) develops a tiny first coordination shell at r⊥ ≈ 2σ.

At tw ≈ 0.5τβ, the peak broadens and shifts to higher values in r⊥ and more peaks appear.

In contrast to g(++)(r⊥; tw), g(+−)(r⊥; tw) has a dip at r⊥ ≈ 0 and a peak at the first

coordination shell at r⊥ ≈ 1.1σ for tw ≈ 0 [Fig. 7.1(b)]. At tw ≈ 0.3τβ, the peak shifts to

r⊥ ≈ 1.3σ indicating increasing population of opposite charges in the neighborhood of a lane.

Like g(++)(r⊥; tw), in g(+−)(r⊥; tw) more peaks are seen at higher r⊥ in for large tw signifying

increasing order between cross charges. The change in the dip at r⊥ ≈ 0 in g(+−)(r⊥; tw) with

tw is probed via 1 − g(+−)(0; tw) [Inset. Fig. 7.1(b)]. 1 − g(+−)(0; tw) increase and saturates

with increasing tw indicates the absence of opposite charges in a particular lane.
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Figure 7.1: (a) g(++)(r⊥; tw) vs r⊥ for tw = 0.2 (black solid line), tw = 0.5 (grey solid line,

with vertical offset 0.1 unit) and tw = 1.5 (black dotted line, with vertical offset 0.2 unit) Inset.

g(++)(0; tw) vs tw (b) g(+−)(r⊥; tw) vs r⊥ for tw = 0.2 (black solid line), tw = 0.5 (grey solid line,

with vertical offset 0.1 unit) and tw = 1.5 (black dotted line, with vertical offset 0.2 unit). Inset.

1 − g(+−)(0; tw) vs tw (c) A typical example of U (+−)(r⊥; tw) construction of g(+−)(r⊥; tw) − 1

as a function of r⊥. Line show U (+−)(r⊥; tw). U (++)(r⊥; tw) is constructed similarly (d) ξ(++)
⊥

(dotted line) and ξ
(+−)
⊥ (solid line) as a function of tw. Dotted and Dashed lines show ∼ t0.2w

dependence. (e) ξ(+−)
⊥ /ξ

(+−)
⊥ (0) vs g(++)(0) (filled circles) , ξ(++)

⊥ /ξ
(++)
⊥ (0) vs 1− g(+−)(0) (open

triangles), (f) ξ(++)
⊥ /ξ

(++)
⊥ (0) vs g(++)(0) (open triangles) and ξ

(+−)
⊥ /ξ

(+−)
⊥ (0) vs g(++)(0) (filled

circles)
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To quantify the length-scale of the spatial correlation between the particles in the system, we

first identify the local peaks in g(+±)(r⊥; tw)−1, for all tw and construct an envelop U (+±)(r⊥; tw).

A typical illustration is given in Fig. 7.1(c). For all tw, U (+±)(r⊥; tw) decay exponentially with

r⊥ [Inset. Fig. 7.1(c)]. We obtain the correlation length at time tw, ξ(+±)
⊥ (tw) by fitting

U(r⊥; tw) ∼ exp(−r⊥/ξ⊥(tw)) [65]. We observe ξ(++)
⊥ (0) ≈ ξ

(+−)
⊥ (0) ≈ 1.0σ in the equilibrium

system. In Fig. 7.1(d), we show the dependences of ξ(++)
⊥ and ξ

(+−)
⊥ as a function of tw. Both

ξ
(++)
⊥ and ξ

(+−)
⊥ remains finite where ξ(++)

⊥ ≈ 1.3 and ξ
(+−)
⊥ ≈ 1.7 at tw ≈ τS. ξ(++)

⊥ fluctuates

around a steady value 1.4ξ(++)
⊥ (0) for large tw. ξ

(+−)
⊥ shows slight decay for large tw > τS so

that there is a maximum around tw ≈ τS. Both ξ
(++)
⊥ and ξ

(+−)
⊥ follow algebraic dependence

(∼ tαw) with α ≈ 0.2.

We examine at the statistical correlation between the length-scales of particle correlations

and the laning tendency in the system. We obtain this by eliminating tw from both quantities

[Figs. 7.2(e) and (f)]. Both ξ
(++)
⊥ /ξ

(++)
⊥ (0) and ξ

(+−)
⊥ /ξ

(+−)
⊥ (0) increases with g(++)(0) initially

but becomes uncorrelated for large g(++)(0) [Fig. 7.1(e)]. Similar behavior is seen for 1−g(+−)(0)

[Fig. 7.1(f)]. This indicates that the correlations grow with laning tendency in the system. The

structural correlations keep increasing even when laning order parameter remains unchanged.

This is an indicative of coarsening. Similarly, the high values in ξ
(+−)
⊥ and ξ

(++)
⊥ appear in the

steady states. In the steady states, 1− g(+−)(0) has high value.

7.2 Dynamic Length-scales

In Chapter 4, we show that the particle diffusion spectrum has a peak at ≈ 0.7DB along with

finite but small probability of high diffusion in the system. This indicates simultaneous presence

of small and fast particles in the system. We tag the slow and fast particles in the system from

particle displacement distribution between two configurations separated by time δt after tw,

given by P (∆r2
⊥; δt, tw). We consider two configurations at time tw and tw + δt and compute

the probability distribution of square of the particle displacements over different trajectories

in the plane transverse plane, ∆r2
⊥. We fix δt(= 0.75τβ). The choice is made such that the

changes in P (∆r2
⊥; δt, tw) are appreciable for all tw. In Fig. 7.2(a), we show the evolution of

P (δr2
⊥; δt, tw) as a function of δr2

⊥ for different tw. For all tw, P (δr2
⊥; δt, tw) is asymmetric in δr2

⊥

with respect to the peak value. With increasing tw, the peak in P (δr2
⊥; δt, tw) shifts to lower

values of δr2
⊥. We calculate the mean µ(tw) and standard deviation σ(tw) of P (+)(∆r2

⊥; δt, tw).

We show the dependence of µ(tw) [main panel in Fig. 7.2(b)] and σ(tw) [Inset Fig. 7.2(b)]on

tw. With increasing tw, both µ(tw) shifts to lower values with increasing tw and saturates
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Figure 7.2: (a) P (∆r2
⊥; δt, tw) vs r2

⊥ for tw = 0.3 (grey dashed line), tw = 0.5 (black dashed

line), tw = 1.1 (black dotted line) and tw = 10 (black solid line) (b) Dependences of µ (main

panel) and σ (inset) on tw

at tw ≈ τS, indicating slowing down in the system. Similarly, σ(tw) decrease with tw and

finally saturates beyond tw ≈ τS. This indicates that mobilities get more homogeneous with

increasing tw. However, a finite heterogeneity persists in mobility in the lane state. In order

to identify ”slow” and ”fast” particles at time tw, we now tag particles of a particular species

as ”slow” (S) if it has displaced by ∆r2
⊥ < µ(tw) − σ(tw). Similarly, we tag the particles with

∆r2
⊥ ≥ µ(tw) + σ(tw as ”fast” (F). Thus we identify the N

(±)
S (tw) no of ”slow” particles of

+ve and −ve charges respectively at time tw + δt. Similarly, we count N (±)
F (tw) for the ”fast”

particles in the same time window.

We construct the ETDCFs of the ‘fast’ and ‘slow’ particles at tw. The ETDCFs are given

by g
(++)
M,N (tw, r) where M and N stands for ”fast” and ”slow” particles respectively of the +ve

particles. There are total six possibilities of the ETDCFs: g(++)
S,S , g(++)

F,S , g(++)
F,F , g(+−)

S,S , g(+−)
F,S and

g
(+−)
F,F . The envelopes of the correlation functions U(M,N)(r⊥, tw) show exponential decay in r⊥

and are fitted by exp(−r⊥/λ(+±)
(M,N)(tw)). Here, λ(+±)

(M,N)(tw) are the spatial correlation length-scales

of particles with different mobilities in the system. Both λ(++)
(S,S) and λ(+−)

(S,S) show increase with tw
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Figure 7.3: (a) λ(++)
(M,N) and (b) λ(+−)

(M,N) as a function of tw; M = S and N = S (filled circles),

M = F and N = S (open triangles), M = F and N = F (filled triangles). dashed line show

∼ tα dependence with α ≈ 0.2. (c)λ(++)
(S,S) vs ξ(++)

(⊥) (d) λ(++)
(S,S) vs ξ(+−)

(⊥) (e) λ(+−)
(S,S) vs ξ(++)

(⊥) (f)λ(+−)
(S,S)

vs ξ(+−)
(⊥)

for tw > τS [Fig. 7.3(a) and (b)]. These lengths become quite large, extending upto 3-4 particle

diameter. We observe λ(++)
(S,S)(tw) ∼ t0.16

w and λ(+−)
(S,S)(tw) ∼ t0.2w for tw 6 τS. λ(+−)

(S,S)(tw) decrease for

tw >> τS. This may be due to decreasing interface between two lanes of opposite charges with

slow charges residing in the lane in presence of coarsening. The correlation lengths of the other

species do not show significant change. Our data indicate that the correlation length between

the slow particles in the system grow till the steady state is reached.

7.3 Discussion

We statistically correlate the data of mobility resolved correlation lengths, λ(+±)
(M,N) and the

structural correlation lengths, ξ(++) and ξ(+−) in Figs. 7.3(c-f). We explicitly consider λ(++)
(S,S)

and λ(+−)
(S,S) which show changes with tw. λ(+−)

(S,S) is linearly correlated to ξ(++) with a difference in

slope in the dependence around ξ(++) ≈ 1.1ξ(++)(0). λ(++)
(S,S) becomes uncorrelated to ξ(++) for

large values ≈ 1.3ξ(++)(0) which corresponds to the steady states [Fig. 7.3(c)]. λ(+−)
(S,S) increase
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Figure 7.4: (a) ξ(++)
⊥ vs ξ(+−)

⊥ plot (b) λ(++)
(S,S) vs λ(+−)

(S,S) plot

for small ξ(++), but gets uncorrelated for large ξ(++) [Fig. 7.3(d)] which corresponds to the

teady states. We also correlate the two structural length-scales, ξ(++) and ξ(+−) in Fig.7.4 (a).

For low ξ(+−), ξ(++) is correlated. For large ξ(+−), ξ(++) becomes uncorrelated. Similarly we

correlate the dynamical length-scales, λ(++)
(S,S) and λ(+−)

(S,S). They are correlated too for small values

of λ(+−)
(S,S) and become uncorrelated in steady states. These data indicates that there are four

independent length-scales in the system in steady states.

7.4 Conclusion

To summarize, we show distinct behavior of correlation functions between different species.

The structural correlation length between the like particles, ξ(++) shows a t0.2w dependence upto

tw ∼ τS and thereafter it saturates. ξ(+−) characterizing structural correlation between +ve and

−ve particles varies as t0.2w within tw ∼ τS but decays in the large time limit. The correlation

lengths, λ(+−)
(S,S) and λ(++)

(S,S) behave similarly as ξ(+−) and ξ(++) respectively. In the steady states,

these length-scales become independent.



Epilogue

I feel a very unusual sensation – if it is not indigestion, it must be gratitude.

– Benjamin Disraeli

This thesis is a breed of my passion and emotions.

I am still in awe of my teacher at PHY205 (Spring 2010). It meant to be a regular course

of computational physics. But Dr. J. Chakrabarti never touched the instructor-computer at

AMRU-classroom for a single time in the whole semester. Yet it changed my vision, my goals,

perhaps, the ways I used to think before. The course cooked something in me which I have

never realized. I could only see me evolved.

Dr. Chakrabarti became Prof. Chakrabarti. Sharing science for more than six years with

my advisor, Prof. Chakrabarti, is more than a privilege for me. There is always something I

learn from each of the interactions with him, beyond the scientific wisdom. These build me

stronger every day.

I cannot but forget the last class of PHY-105(Fall 2010). Prof. S. S. Manna gave me a

ten rupee note (No-22C 259386, still kept at my bedside table) at the end of a marathon six

hours class. My codes started running without bug after that. But I agree with Prof. Manna,

Soumya (Soumyakanti Bose) was the most talented guy in our batch.

Soumya is the one whom I discuss every new things in life first. And definitely Pratik

(Pratik Tarafdar). Together, we form CUBICLE ONE (Cubicle No. 1 at the Students Bay).

We made possible every small impossible things: ScipiX (The very first SNBNCBS Magazine) to

Muktangan (The first Cultural forum at SNBNCBS). There were also few good people around

us: Victor (Dr. Victor U. J. Nwankwo), Arindam Da (Arindam Ghosh), I find your words

reverberating around me.

I feel good when I look back to the life at GD-76 (2010-12). The time and the fun we had

together, I would always cherish. Tejas (Tejas D. Rathod), I have retired from cricket after that

match at the lawn. I have heartfelt gratitude for Arpan (Arpan K. Mitra) and Ankita (Ankita

Chakrabarti) for the proxies on our behalf. Those nights right before the semester exams are
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never going to come again.

How can I forget Dr. Debapriyo Syam? During 2009-10, while setting up the laboratory

for upcoming M. Sc batch at the Barasat Government College, I had my first taste in research.

Spending time with Prof. Syam at the lab, was more than joy. I still remember those rainy

evenings when we walked together to Barasat station. I am lucky to have such moments of life.

There was Jyotish Kaku (Jyotish Chandra Roy). There was Kalyan da (Dr. Kalyanbrata

Chatterjee). There were fights between three of us: me and two of my very first labmates,

Parvez (A. M. Parvez Biswas) and Sabuj (Dr. Sabuj Ghosh) who used to compete every day to

calibrate the spectrometer the fastest. There I had the finest company of Pallab (Pallob Paul),

Debaleen (Debaleen Ghosh) and Santunu (Santunu Dey). There was Coffee House. There was

college canteen. Indeed, there was life!

Life teaches a lot. Time proceeds from successes to mistakes. Mistakes show the path to

success again. Success is an outburst of that agony. Agony comes from pain.

Pain comes from sacrifices:

To be a newly married husband towards the end of Ph. D is always difficult. Priyanka, I

wish, someday, you would realize what it takes to ignore a lady like you, day after day, night

after night. I wish, I would be a better husband some day.

Lastly but for-mostly, the two paraplegic kids at my home, Baba and Ma. I am lucky to

have a father and mother like them. Words are not enough to express your sacrifice, the pain

you’re suffering currently, your efforts and supports.

This thesis is a tribute to everyone who contributed in shaping me.
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[7] H. Löwen, Soft Matter, 6, 3133 (2010)

[8] D. Chandler, Introduction to Modern Statistical Mechanics, (Oxford University Press, 1987)

[9] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

[10] I. S. Aranson, Phys. -Usp. , 56, 79 (2013)

[11] J. Dzubiella, G. P. Hoffmann and H. Löwen, Phys. Rev. E, 65, 021402 (2002)
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[13] J. Chakrabarti, J. Dzubiella, and H. Löwen, Phys. Rev. E, 70, 012401 (2004)

[14] R. R. Netz, Europhys. Lett. , 63, 616 (2003)
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